CleverNAO:
The Intelligent Conversational Humanoid

Robot

Jessel Serrano

April 15th, 2015

Independent Study: Artificial Intelligence
Spring 2015
Instructor: Dr. Janusz Zalewski
Software Engineering Program
Florida Gulf Coast University
Ft. Myers, FL 33965

1. Introduction

“Can machines think?” This is the question asked by Alan Turing which has since
spawned numerous, passionate debates on the subject of artificial intelligence [1]. It has also
spawned the famous Turing Test, a test which determines if a particular machine (or algorithm)
can pass as a human. Since its inception, the Turing Test has, in fact, been passed by a few
artificial intelligence algorithms. Some of these algorithms represent the latest technology in
terms of artificial intelligence.

Artificial intelligence is part of a broad field called cognitive science, which is simply a
study of the mind and the way it works. For the purposes of cognitive science, artificial
intelligence is defined as “ a codification of knowledge will finally explain intelligence” [2].
However, when it comes to engineering, the purpose of artificial intelligence is to use knowledge
to solve real-world problems. One of these problems, similar to the problem of the Turing Test,
is how to make an artificial device or creature appear more human. To address this problem, a
technology has been created called chatbots. These are artificial intelligence algorithms that
process natural language and, using the analysis that results from the processing, outputs an
intelligent response. It is the utilization of these chatbots that is the main concern of this project.

In this project, a chatbot will be linked to a robot so that the robot will verbally speak
what the chatbot’s response is to a human. The chatbot used in this project is Cleverbot [3], a
chatbot created by Existor [4] and the robot is the NAO robot [5]. The intended result is an
application, named CleverNAO, that facilitates a verbal conversation between a human and the
NAO robot, which emulates Cleverbot.

The importance of this project can be paralleled to the historical and cultural importance
of the Turing Test itself. Although the human participant is not going to be fooled by
CleverNAO (due to the physical appearance of the NAO robot), such a conversation between a
human and a robot signals a new era in robotics and artificial intelligence. To have a physical
robot that is not only able to move, but also hold a verbal conversation is akin to notions of
science fiction and truly intelligent robots. One can imagine a future where these robots are the

new store clerks, customer service agents, teachers, even friends.

2. Definition of the Problem

2.1 General Overview

When it comes to artificial intelligence and natural language processing, there are six
main steps required in having a computer participate in a conversation and to take action (Figure
1):

1. Speech Recognition: Acoustic speech signal is analyzed to determine sequence of spoken
words.
2. Syntactic Analysis: Using knowledge of language’s grammar, sentence structure is
formulated.
3. Semantic Analysis: Partial representation is derived from the sentence structure to
articulate the meaning.
4. Pragmatic Analysis: Produces a complete meaning for the sentence that comes with
contextual information, such as time, place, speaker, etc.
5. Pragmatic Response: Using the complete sentence and its meaning, respond with a
sentence that follows the line of thinking.
6. Physical Emulation: Have a physical figure (robot) verbally speak the response.
As a result, the computer should be able to either respond in a conversation, perform an
appropriate action, or make a decision. For example, this response can either be the output of a
sentence or the activation of a switch. In the case of this project, the first four steps will be
utilized to produce an artificial intelligent entity that can give a response to a person. However,
in order to emulate a conversation between the entities, two additional steps are introduced.

The first step will be accomplished via an API that processes human speech via a
microphone and translates the acoustic sound waves to sentences in a computer. These sentences
will then be passed to the second API which is the chatbot. The chatbot will accomplish steps 2-4
through a series of HTTP connections and selected artificial intelligence algorithms. The final
two steps will be accomplished by having a robot verbally say the response. These six steps will
then loop in order to produce a physical conversation between human and robot. The entire

process is shown in Figure 1.

Natural Language Processing (Input)
Speech . . 4 . Pragmatic
Recognition Syntactic Analysis Semantic Analysis Analysis
A
Text-to-Speech Processing (Response)
L Physical [Pragmatic
00p Emulation { Response

Figure 1: CleverNAO Conversation Cycle
2.2 Chatbot Tool

A chatbot is a program designed to generate text that is imitative of human conversation.
When using a chatbot, the user inputs the text via a keyboard, which eliminates the need for the
program to recognize the acoustic speech signal. Instead, a syntactic analysis is required for the
inputted text in which the program must begin to understand the sentence structure and grammar.

The chatbot algorithm being used in this study will exhibit steps 2-4 continuously. It will
take in a String as a parameter and output a response that appropriately follows the
conversational tone of the input String. This input String is the result of the first API which
converts speech to syntax. The response is a String generated through an HTTP connection with
a particular chatbot algorithm. For the purposes of this study, the chatbot algorithm in use is the
Cleverbot [3].

Cleverbot is an artificial intelligence algorithm developed by the company Existor. Their
goal is “to further develop our Al algorithms to achieve truly semantic understanding of natural

language” [4]. Cleverbot learns from people and uses a database of millions of lines of

conversations in order to produce a response that is likely to what a human would say. This
algorithm allows it to grow and learn from conversing with humans much like an intelligent
entity. When selecting a response, Cleverbot searches its database three times in the online
version. In order to pass the Turing Test, Cleverbot used 42 databases to produce a response that
is semantically and syntactically correct as well as relevant to the conversation as a whole.
Cleverbot passed the Turing Test by fooling 59 percent of people that it had conversations with
into believing it was an actual person.

Once Cleverbot has been implemented with the Speech Recognition API mentioned
beforehand, the fulfillment of natural language processing for a program or entity will be
completed for each step. The result will be a response generated by Cleverbot. This response will
then be passed to a robot as a String, which will utilize its API to convert text to speech. This

robot will be the NAO robot.
2.3 NAO Robot

The NAO robot is an autonomous, programmable humanoid robot developed by
Aldebaran Robotics [5]. The NAO contains a plethora of sensors that can be used to detect
motion and sound, as shown in Figure 2. Its main connectivity for development is through either
a Wi-Fi module or an Ethernet port. This allows for development of the NAO robot over a
network or via the Internet.

In this project, the NAO will be manipulated via a network by a program on a computer.
The NAO acts as the Server while the computer acts as the Client. This is seen by the way in
which the NAO API is called; the API, on the side of the client, is called via calls to the
respective method on the side of the NAO’s embedded API. This method on the NAO’s side is
what manipulates the NAO. All that is needed is the IP address and port number of the NAO
robot. Using these two pieces of information, one can initialize a connection to the NAO robot
by instantiating one of the modules of the NAQO’s library, NAOqi. In this case, the NAO’s
text-to-speech protocol will be manipulated so that the NAO will verbally speak the response of
the Cleverbot. In this way, the NAO robot embodies the Cleverbot algorithm and becomes

CleverNAO. The network connectivity is discussed in more detail in the next section.

Vaolce Recognition

Voice Synthesis
_ 2 Cameras
Ematiens R
Swithcable Head

Embedded CRU .

weith Wi-Fi Prehensive Hands

LiPo Battergr' Linux 05
25 Degress of Freedom - 23"
e g

Figure 2: Sensors of the NAO Robot

3. Software Development

3.1 General Introduction

The CleverNAO is composed of six physical entities as shown in the physical diagram in
Figure 3. Using a microphone, the user speaks a coherent and clear sentence. This speech is
picked up by the microphone and sent to the laptop running CleverNAO. Using a speech API,
these audio data are translated from speech to text. This process is essential to CleverNAO and is
discussed in detail later in Section 3.3.1. Once the user’s speech is converted to text form, the
chatbot tool is to give a response to the user. This response is sent to the NAO robot, via the

wireless router, in which the NAO will use its speakers to convert the text to speech.

Cleverbot

NAO Robot

Wireless
Router

Speaker (Voice
Output)

Audio Input
USER Device

(Microphone)

Figure 3: Physical Diagram of the CleverNAO

As can be interpreted from above, CleverNAO is the main program that ties the
conversation between the user and the robot. It controls three processes that are necessary for a
conversation between the user and the robot to occur: speech processing, chatbot processing, and
NAO processing. The name CleverNAO implies that the chatbot used in this project is the
Cleverbot, as discussed previously. This process is then renamed to ‘Cleverbot processing’ to
accurately reflect what is happening: using HTTP, a request is sent to the Cleverbot website from

the CleverNAO program. In return, a response is received.

These three processes are highlighted in the context diagram, shown in Figure 4. In this

diagram, the CleverNAO acts as the main software that takes data from the user, the NAO robot

and the Cleverbot website and transforms the data to output responses which will be sent to the

NAO and to the display or monitor. It begins with the user by verbal speech to the NAO. The

CleverNAO will take in this speech and transform it into an input string using the speech API.

The CleverNAO software will then send an HTTP request to Cleverbot.com. This request

contains the input string and it asks Cleverbot to provide a response. Cleverbot.com will return

with a response that is passed to CleverNAO. This response is also in the form of a String; this

response string is then be passed to the display for printing and to the NAO robot.. The NAO will

take this response string and, using text-to-speech, speak the response to the user. This will loop

continuously and the series of inputs and responses will lead to a conversation between the

CleverNAO and the User, implementing a human-to-robot conversation.

User
Interface User :
Processing S SEET Display
\ 7
Acouslic Data Visual Data EDBEKEI'
Cleverbot 1 Text to
HTTP] S Speech
n TN
Request Py g Programmed
Instructions
CleverNAQ *
(Running on Laplop) | NAC
Sensor Data
Cleverbot Response $
HTTP " String Face/fudio
Response Tracking
Audio .
Data Siring
Camera
[
Dictation
{Speech to Text
Cleverbot User Speech Conversion) MNAD
Processing Processing Processing

Figure 4: Context Diagram

3.2 Software Requirements

The specific requirements for the CleverNAO software and the NAO itself are listed

below.
3.2.1 CleverNAO General Requirements

3.2.1.1 The CleverNAO shall output the conversation to the display in real time
3.2.2 CleverNAO Requirements Specific to Speech
3.2.2.1 The CleverNAO shall take audio data from the user through a microphone
3.2.2.2 The CleverNAO shall accurately translate speech to text
3.2.3 CleverNAO Requirements Specific to Cleverbot
3.2.3.1 The CleverNAO shall send an HTTP request to Cleverbot.com
3.2.3.2 The CleverNAO shall get an HTTP response from Cleverbot.com
3.2.4 CleverNAO Requirements Specific to NAO
3.2.4.1 The CleverNAO shall establish and maintain a connection to the NAO
3.2.4.2 The Cleverbot shall send text to the NAO
3.2.5 NAO Requirements
3.2.5.1 The NAO shall receive text from the CleverNAO program
3.2.5.2 The NAO shall convert text to speech

3.3 Design Description

The CleverNAO program is created using Visual Studio and coded in C#. Itis a

Windows forms application that utilizes several APIs mentioned previously. The first is
Microsoft’s .NET Speech library that has speech recognition (speech to text). The second library
is an open source Chatter Bot API [6] that allows HTTP connections with three different chatbot
algorithms: Cleverbot, JabberWacky, and Pandorabots. The final library is that of the NAO,
which contains proxy classes that command the NAO robot. An overall flow of all three libraries

and how CleverNAO uses them can be seen in Figure 5.

. . Print to
Program Start i Walt‘r;orulf/ahd - Loop Conversation
P Box
A
. Convert Speech
-] Initialize Speech | to Text N
Send Text to
A NAO
Initialize Cleverbot and
| - Clar — Wait for - Connected?
Response
"l:a
Initialize NAO Send Response Convert Text to
- Proxies & {0 NAO | Speech on NAO
Connection Robot

Figure 5: CleverNAO Flowchart
3.3.1 Microsoft Speech Platform

The first process that occurs in the conversation between human and robot is to hear and

understand what the human says. How this is accomplished in the development of CleverNAO is

10

through speech recognition software, which takes in acoustic vocal sounds (verbal language) and
converts it to text. Since development took place in Microsoft Visual Studio, a native library is
used to convert speech to text: the Microsoft Speech API, or SAPI [7].

Within the libraries of SAPI there is a Speech Recognition engine, as well as a Speech
Synthesis engine. The latter converts text to speech and is not utilized in this project due to the
NAO robot’s text to speech capabilities (discussed in the sequel). The Speech Recognition
engine converts speech to text by using Grammar objects. “A speech recognition grammar is a
set of rules or constraints that define what a speech recognition engine can recognize as
meaningful input.” [7]. Using DictationGrammar, a grammar that allows free text dictation,
SAPI will try to recognize all audio input as speech and convert it to text. To ensure that the
speech recognition software does not continuously try to convert audio and background noise, a
push to talk button is implemented.

Using the standard Windows Forms API, on a key/button press down, the speech
recognition engine will begin to listen for speech to convert to text. Then, when the user has
finished speaking, the key/button will be released and another event will trigger causing the
speech recognition engine to stop listening and convert what it has heard to text, which will be

outputted to the screen. This process is shown in the Figure 6.

Figure 6: The Speech Recognition Process Flow

11

3.3.2 Chatter Bot API

Another important process that occurs in the CleverNAO is the conversation with
Cleverbot. As noted previously, this conversation is accomplished using an open source library.
This library has, within it, the ability to connect with Cleverbot through the Internet and receive a
response directly from Cleverbot. It is here that the majority of the Artificial Intelligence
algorithm is executed, albeit indirectly. It is executed indirectly because Cleverbot is an already
instantiated algorithm that is merely accessed through HTTP connections. What this library
specifically accomplishes is the retrieval of a response that has already been built through natural

language processing. A basic outline of this process is shown in Figure 7.

Chat-Bot Creates
New Session
Session.Think() Response String ‘ Session Returns]

Factory Object
New ChatterBot Factory Creates New
Chat-Bot

Response

Figure 7: Chatter Bot API Flowchart

As shown in Figure 7, several objects are created before an actual response is received.
The Factory object first creates the chatbot object. This chatbot object is instantiated through a
web connection with the respective chatbot algorithm, be it Cleverbot or another. This chatbot
object then creates a new session which contains the main method used in receiving a response,
Think (). The Think () method takes a string argument. This string is the input that comes
from the user or the human. Through HTTP web requests and posts, the input string is sent to the
respective chatbot algorithm, is analyzed via their server side, and returned to CleverNAO as a

string. This string is the response to the user, to which the user must then choose to respond to.

12

3.3.3 NAOqi Framework

The final library used in the CleverNAO is the NAOqi library, which is the NAO robot’s

framework for controlling and commanding the robot itself. How the framework operates is
shown in detail in Figure 8 [8]. In this diagram, there is the Broker, which acts as the point of
communication between the robot and the caller (the computer running the program). Located on
the NAO robot is its own native library that contains methods which mirror what is contained in
the Broker. This means that CleverNAO is not actually calling methods on the NAO, but rather
calls proxy methods which it then passes to the Broker. The Broker then communicates to the
NAOQO'’s native library and tells the library to call the methods to which the proxy methods
correspond to. In this way, the CleverNAO can maintain a connection with the NAO robot and,
using the NAOqi Framework, command the robot with respective calls to its individual modules.

These modules are separated by category. For example, there is a module for Motion, Audio, etc.

Broker Modules Methods

insertDatal...)

ALMemaory getDatal...}

raiseEvent|...)

Metwaork :
Access ALMotion anglelnterpolation(...)

getAnglel...)

setintensity(...)

AllLeds

]
]
)
4— waro))
)
]
)
]

fade(...)

Figure 8: NAOqi Framework Overview

13

The main module used in the CleverNAO is the Audio module which contains the
text-to-speech proxy class. This class is instantiated using the IP address and port number of the
NAO robot. Once instantiated, its main method say () is called and is passed a string. This
string is sent to the NAO via the Broker, in which the NAO will call its native text-to-speech

library and actually speak the string that was passed to it.

14

4. Implementation and Testing

This section deals with the implementation and testing of the three processes: speech
processing, chatbot processing, and NAO processing. In addition to these three processes there
are two auxiliary processes: the Background Worker and the conversation box that records the
conversation between the human and robot, both which are explicated below.

4.1 Auxiliary Processes

The Background Worker is a native library available in the .NET framework that simply
performs tasks behind the main application on a separate thread so that the GUI does not lock up.
The task that the Background Worker performs in this project is getting a response from the
Cleverbot website. Because getting a response incurs a delay due to Internet request times and
bandwidth, the application tends to lock up when waiting for a response. By implementing the
Background Worker, the user can still interact with the application’s GUI while waiting on a
response. The following code are the Background Worker’s event handlers which tell it what to

do when it is called on to do work and when it has completed its work.

private void bw_DoWork (object sender, DoWorkEventArgs e) {
BackgroundWorker worker = sender as BackgroundWorker;
e.Result = getResponse((string)e.Argument) ;

private void bw_RunWorkerCompleted (object sender,
RunWorkerCompletedEventArgs e) {
if (!'connectedToCleverBot)
outputToConvoBox ((string)e.Result, 3);
else
outputToConvoBox ((string)e.Result, 1);

Once the Background Worker completes its work, it outputs the response to the
Conversation Box, which is a rich text box. This is handled using a single helper function that
takes two arguments, the string to output and the type of output. There are three types of outputs:
a robot output, a human output, and a system output. The system output is used for displaying

system messages or errors. The helper function is shown in the following code below.

15

public void outputToConvoBox (string line, int type) {
int length = convoBox.TextLength;
switch (type) {
case 1: // From robot
convoBox .AppendText ("Robot: " + line + "\n");
convoBox.SelectionStart = length;
convoBox.SelectionLength = line.Length + 8;
convoBox.SelectionColor = Color.Blue;
if (connectedToNAO)
sendToNAO (1line) ;
break;
case 2: // From human
convoBox .AppendText ("Human: " + line + "\n");
convoBox.SelectionStart = length;
convoBox.SelectionLength = line.Length + 8;
convoBox.SelectionColor = Color.Black;
break;
case 3: // System messages
convoBox .AppendText (line + "\n");
convoBox.SelectionStart = length;
convoBox.SelectionLength = line.Length + 1;
convoBox.SelectionColor = Color.Red;
break;
default:
break;
}
inputBox.Enabled = true;
inputBox.Focus () ;
convoBox.SelectionStart = convoBox.Text.Length;
convoBox.ScrollToCaret () ;

4.2 Microsoft Speech Implementation
The implementation of Microsoft’s speech recognition begins with the initialization of

Speech objects. The first is a Grammar object which needs to be initialized and loaded into the

second object, a Speech Recognition Engine. Since what is desired is free text dictation, the

DictationGrammar object is initialized. Then, a new SpeechRecognitionEngine object

is created and, using its method LoadGrammar (), loads the DictationGrammar object. The

final step in initialization is to link the Speech Recognition Engine to an event handler that, when

speech is recognized, outputs it to the conversation box and calls on the Chatter Bot API to get a

16

response to the recognized speech. This initialization, as well as the event handler, are shown in

the code shown below.

public void startSpeech () {
DictationGrammar dg = new DictationGrammar () ;
dg.Enabled = true;

SpeechRecognitionEngine sre = new SpeechRecognitionEngine () ;
sre.LoadGrammar (dg) ;

sre.SpeechRecognized += new
EventHandler<SpeechRecognizedEventArgs> (recognizer_ SpeechRecognized) ;
sre.SetInputToDefaultAudioDevice() ;

}

void recognizer SpeechRecognized(object sender,
SpeechRecognizedEventArgs e) {
if ('bw.IsBusy) {
outputToConvoBox (e.Result.Text, 2);
bw.RunWorkerAsync (e.Result.Text) ;

As shown in the event handler above, the resultant text is both outputted to the
conversation text box and passed as a parameter to a Background Worker object, which runs
asynchronously. In order to limit and control the number of times the event handler catches the
SpeechRecognizedEventArgs event, a push-to-talk button is implemented. When the
assigned key is pushed down, the Speech Recognition Engine’s RecognizeAsync () method is
called so that the audio picked up by the microphone will be interpreted as speech. When the key
is released, the RecognizeAsyncCancel () method is called which cancels any further
recognition and converts what it has picked up to text. This is implemented via event handlers

and is shown in the code below.

void pushToTalk keyDown (object sender, KeyEventArgs e) {
if (e.KeyCode == Keys.ControlKey && !recognitionRunning) {
try {
sre.RecognizeAsync() ;
speechOnOff .BackColor = Color.LimeGreen;
speechOnOff.Text = "On";
e.Handled = true;

17

e.SuppressKeyPress = true;
recognitionRunning = true;

}

catch (Exception ex) {
MessageBox . Show (ex.Message) ;

}

void pushToTalk keyUp (object sender, KeyEventArgs e) {
if (e.KeyCode == Keys.ControlKey) {
sre.RecognizeAsyncCancel () ;
speechOnOff .BackColor = System.Drawing.SystemColors.Control;
speechOnOff.Text = "Off";
recognitionRunning = false;

4.3 Chatter Bot Implementation

The implementation of Cleverbot begins with the initialization of several Chatter Bot

objects. The first is a Chatter Bot Factory object. It is this Factory object that creates the Chatter
Bot object using the method Create (). This method is passed a ChatterBotType argument
which dictates which kind of chatbot is being implemented, be it Cleverbot, Pandorabot, or
Jabberwacky. Once the Chatter Bot object is initialized, it calls a method CreateSession ()
which initializes a new Chatter Bot Session object. It is this Session object that takes in strings

and returns a response. The initialization is shown in the code shown below.

public void startCleverbot () {
ChatterBotFactory factory = new ChatterBotFactory() ;
ChatterBot robot = factory.Create (ChatterBotType.CLEVERBOT) ;
ChatterBotSession session = robot.CreateSession() ;

Once initialized, the Chatter Bot Session is ready to begin accepting input. This is done
through the method Think (), which takes a string argument and returns a response as a string.
In this project, this is encapsulated within the helper function getResponse (). This helper
function is called in the Background Worker’s event handler that performs the work, as shown

previously. Shown below is the helper function, getResponse ().

18

public string getResponse (string input) {

try {
connectedToCleverBot = true;
return session.Think (input) ;

}

catch (Exception e) {
connectedToCleverBot = false;
return "Error: " + e.Message;

4.4 NAO Implementation
The implementation of the NAO robot begins with the initialization of the NAO proxy

objects. The only proxy object that is initialized in this project is the TextToSpeechProxy.
When initialized, this object takes two parameters, the first being the IP address of the NAO
robot and the second being the port number of the NAO robot. Once a response is received by
the Chatter Bot API, the response is passed to a method which is called by the
TextToSpeechProxy object, say (). This method is called in the sendtoNAO () method,
which is shown below. Additionally, this method takes a string argument. It is this string that the
NAO will verbally speak. The code that initializes the NAO robot is also shown below.

public void startNAO() {

try {
TextToSpeechProxy tts = new

TextToSpeechProxy ("192.168.0.102", 9559);
connectedToNAO = true;

}
catch (Exception e) {
connectedToNAO = false;
Errorlabel.Text = "No Connection to NAO";

}

public void sendToNAO (string input) {
tts.say (input) ;
}

4.5 Testing

19

With respect to the requirements documented in Section 3.2, this section describes the

test cases in order to verify the functionality and reliability of the system. These test cases

represent partial functionality of the numerous requirements for the system to run properly. In

addition, the typical session of conversation between a human operator and a robot is

documented in the Appendix.

Test ID

1

Title

Human Output to Conversation Box

Related Requirements

3.2.1.1

Directions Type anything in the input text box and press enter.
Expected Result The Conversation Box should display what was typed.
Actual Result Success

Test ID 2

Title Speech to Text Accuracy

Related Requirements

3.2.1.1,3.2.2.1,3.2.2.2

Directions Hold down the push to talk key (Control Key), speak clearly, then
release the key.

Expected Result What was spoken should be translated to text and outputted to the
Conversation Box.

Actual Result Failure: The Speech to Text roughly translates what the user said.

Test ID 3

Title Cleverbot Response

Related Requirements

3.2.1.1,3.2.3.1,3.23.2

Directions

Type ‘hello’ into the input text box and then wait for a reply.

Expected Result

The Conversation Box should display, in blue, the response from
Cleverbot.

20

Actual Result Success

Test ID 4

Title NAO Connection
Related Requirements 32.4.1,3.2.4.2

Directions Connect to the same network that the NAO robot is connected to.
Run CleverNAO.
Expected Result There should be no error in CleverNAO when on the same network

as the NAO robot.

Actual Result

Success: When not connected to the same network as the NAO
robot, ‘Not Connected to NAO’ displays in CleverNAO. When
connected to the same network, no error displays.

Test ID

5

Title

NAO Text to Speech

Related Requirements

3.2.1.1,3.2.5.1,3.2.5.2

Directions Connect to the same network that the NAO robot is connected to.
Run CleverNAO. Type ‘hello’ into the input text box and then wait
for a reply.

Expected Result The response from Cleverbot should display in the Conversation
Box and the NAO robot should verbally speak the response.

Actual Result Success

21

5. Conclusion

This project is centered on the creation of a physical robot that any person could talk to in
the English language. The objective is to pair an artificial intelligence algorithm that processes
natural language with a physical robot that could synthesises speech. The result is a successful
emulation of a chatbot, Cleverbot, with the NAO robot doing the speech synthesis.

The CleverNAO application had to be built by using three unrelated libraries. The first is
a Microsoft Speech library that is used to capture speech and convert it to text. This allows the
conversation between a human and a robot to be a spoken conversation as opposed to a written
one. The second library is an open source library that creates an HTTP connection to several
chatbot artificial intelligence algorithms. In this project, the chosen chatbot is Cleverbot. The
final library is the NAOqi Framework and it is used to connect to and command the NAO robot.
By combining these three separate libraries, an application is created that facilitates and records a
verbal conversation between a human and a robot.

The result is the CleverNAO application that performs exactly as expected. Getting a
reply from Cleverbot and having the NAO robot synthesize the reply to speech operates
smoothly and concisely. The largest problem, however, lies with Microsoft’s speech recognition.
This problem is one of accuracy in the conversion from speech to text. Without a noiseless
background, the accuracy of the conversion is optimal at best. If any words are not enunciated
clearly, the conversion produces different words or does not produce text at all. In order to
improve the accuracy of the speech-to-text portion of this project, a different speech recognition
library is recommended.

Possible extensions of this project are to improve the speech-to-text process and to
animate the NAO during conversation. The latter, animation of the NAO, can be implemented by
using either the Face Tracking or Sound Localization modules in the NAOqi Framework. If
implemented, these modules will allow the NAO to turn and face the person who is speaking to

it, making the interaction more human.

22

6. References

[1]

[2]

A. M. Turing, “Computing Machinery and Intelligence”, URL:
http://www.loebner.net/Prizef/TuringArticle.html

J. Friedenberg, G. Silverman, <Cognitive Science: An Introduction to the Study of

Mind>, Sage Publications, Inc. 2006

[3]
[4]
[5]
[6]
[7]

[8]

Cleverbot, Existor, URL: www.cleverbot.com

About us, Existor, URL : www.existor.com/company-about-us

Who is NAO?, Aldebaran, URL: www.aldebaran.com/en/humanoid-robot/nao-robot
P.D. Bélander, Chatter Bot API: https://github.com/pierredavidbelanger/chatter-bot-api
Microsoft Speech API (SAPI) 5.3, Microsoft, URL:

https://msdn.microsoft.com/en-us/library/ms723627(v=vs.85).aspx
NAOqi Framework, Aldebaran, URL:
http://doc.aldebaran.com/1-14/ images/broker-modules-methods.png

23

http://www.aldebaran.com/en/humanoid-robot/nao-robot
https://github.com/pierredavidbelanger/chatter-bot-api

7. Appendix

This session contains documented experiments with the CleverNAO software and the
conversations that result from a human-to-robot interaction. These experiments test the
soundness of the CleverNAO system in two parts: without speech-to-text and with
speech-to-text. The first experiment, without-speech-to-text, focuses mainly on the verifying the
soundness of the conversational capabilities of the robot and if a conversation can be carried out
reasonably. This is to say that what is being tested is if Cleverbot can respond to user input
without substantial delay, with intelligent responses, and with responses that follow the tone of
the conversation. The second experiment, with speech-to-text, focuses on verifying the
soundness of the speech-to-text and text-to-speech modules and whether, when implemented, it
can handle a fluid and verbal conversation. This is to say that what is being tested is if user
speech can be translated to text accurately and if the Cleverbot response can be translated to
speech accurately.

7.1 Sample Conversation (Without Speech-to-Text)

This experiment was conducted by running the CleverNAO program on a laptop that is
connected to the wireless network that the NAO robot is on (Figure 9). In order to get a response
from Cleverbot, sentences were typed into the input box. Upon pressing Enter, the sentences

would be inserted into the Conversation Box and a reply from Cleverbot would ensue.

24

Figure 9: NAO Robot and CleverNAO Program
This experiment found successful results. Using the input box on CleverNAO, text was
sent to the Conversation Box in which Cleverbot replied directly (Figure 10). The responses by
Cleverbot came within seconds. As shown in the timestamps in the excerpt of a conversation
below, the longest response was a little more than ten seconds. As for the intelligence of the
responses, they were on point and, at times, deeply philosophical. For example, when

questioning the beliefs of Cleverbot, the response was, “I believe in other things, but not God.”
o CleverNAO - B

(4:24:34 PM) Human: Hello o
(4:24:40 PM) Robot: What's up?

(4:24:51 PM) Human: Mathing much. What are you up to?

(4:24:52 PM) Robat: Oh | am listening to an album.

{4:24:55 PM) Human: Which album?

{4:25:00 PM) Robat: Kemplunl.

(4:25:06 PM) Human: Who is the artist?

(4:25:10 PM) Robat: He isn't an artist.

(4:25:14 PM) Human: What is he?

4:25:15 PM) Robot: Wha?

(4:25:28 PM) Human: The person who made Kemplunk

(4:25:28 PM) Robat: What is he and what am |.

{4:25:38 PM) Human: ou are a robot

(4:25:44 PM) Robat: Mot true.

(4:25:45 PM) Human: Why not?

(4:25:51 PM) Robot: Because it isnt! W

LR T T T I e mmipion A g i i el s sy s, . e i il . gl sl

Clear
Conwversation

Figure 10: Sample Conversation of CleverNAO Software
The only issue with this experiment is the tone of the conversation. Occasionally,
Cleverbot would randomly change topics and, when questioned about the previous topic, would
reply as if it had no recollection of that topic that was just discussed. This issue is one of memory
and reference and it may seem that this is a handicap to Cleverbot. To the CleverNAO system,

however, this experiment demonstrates success.

25

o CleverNAO = O

PS50 1 VI Bngng., VgL Wl yug UEIIEUEIII

{4 2700 PM) Robat: | believe in ather things, but not God.

{42744 PM) Human: Why dont you believe in God?

(42745 PM) Robot: Because | can't see him so he is not real.
{4:27:58 PM) Human: | cant see you. Does that mean you're not real ¥
{42755 PM) Robot: Mo. K just means | have my web cam taped over.
(4:28:55 PM) Human: Then take off the tape and show me your face.
{4:25:05 PM) Robat: "is a robat™.

{4:25:17 PM) Human: So you are a robot!

{4:29:23 PM) Robat: Yes.

{4:25:44 PM) Human: | knew it

(4:25:46 PM) Robot: Yay, what is my name?

{4:29:56 PM) Human: Your name is robot .

(4:30:05 PM) Robot: Mo it isn't yours is, you silly thing geting all confused.
(4:30:13 PM) Human: What is your name then?

{4:30:24 PM) Robat: My name is Cleverbot . Just like vou.

Clear
Conversation

Figure 11: Sample Conversation of CleverNAQO Software

(4:24:34 PM) Human: Hello

(4:24:40 PM) Robot: What's up?

(4:24:51 PM) Human: Nothing much. What are you up to?
(4:24:52 PM) Robot: Oh I am listening to an album.

(4:24:59 PM) Human: Which album?

(4:25:00 PM) Robot: Kerplunk.

(4:25:06 PM) Human: Who is the artist?

(4:25:10 PM) Robot: He isn't an artist.

(4:25:14 PM) Human: What is he?

(4:25:15 PM) Robot: Who?

(4:25:28 PM) Human: The person who made Kerplunk
(4:25:28 PM) Robot: What is he and what am .

(4:25:38 PM) Human: You are a robot

(4:25:44 PM) Robot: Not true.

(4:25:49 PM) Human: Why not?

(4:25:51 PM) Robot: Because it isn't!

(4:26:05 PM) Human: Give me a reason why you are not a robot
(4:26:09 PM) Robot: Because I am your friend and it is rude to ignore your friends.
(4:26:21 PM) Human: Robots can be friends.

(4:26:22 PM) Robot: Yeah, until they take over the world.
(4:26:31 PM) Human: Are you going to take over the world?
(4:26:35 PM) Robot: No. I don't believe in world domination.

26

(4:26:46 PM) Human: What do you believe in?

(4:27:00 PM) Robot: I believe in other things, but not God.

(4:27:44 PM) Human: Why don't you believe in God?

(4:27:45 PM) Robot: Because I can't see him so he is not real.
(4:27:58 PM) Human: I can't see you. Does that mean you're not real?
(4:27:59 PM) Robot: No. It just means I have my web cam taped over.
(4:28:59 PM) Human: Then take off the tape and show me your face.
(4:29:05 PM) Robot: *is a robot*.

(4:29:17 PM) Human: So you are a robot!

(4:29:23 PM) Robot: Yes.

(4:29:44 PM) Human: I knew it

(4:29:46 PM) Robot: Yay, what is my name?

(4:29:56 PM) Human: Your name is robot.

(4:30:05 PM) Robot: No it isn't yours is, you silly thing geting all confused.
(4:30:13 PM) Human: What is your name then?

(4:30:24 PM) Robot: My name is Cleverbot. Just like you.

7.2 Sample Conversation (With Speech-to-Text)

This experiment was conducted similarly to the previous experiment. The main
difference was instead of typing a sentence into the input box, the sentence was spoken and then
translated to text and finally sent to the Conversation Box to elicit a reply from Cleverbot. This
was accomplished by holding down the Control key, speaking, and then releasing the Control

key. As shown in Figure 12 and 13, a button turns green when the Control key is held down.

Figure 12: Using Push-to-Talk on CleverNAO

27

This experiment has mixed results. The latter half of the experiment, having NAO
synthesis speech from text, was successful. The NAO robot enunciated words and phrases
perfectly. However, the NAO robot failed when synthesizing expressions. For example, in the
excerpt of a conversation above, Cleverbot replies with, “*is a robot*.” The asterisks denote an
expression implying an action or a result. In this case, questioning Cleverbot on its robotic nature
resulted in Cleverbot revealing that it is a robot. The NAO, however, would synthesize this reply

literally and enunciate the asterisk as “asterisk.” The result is, “asterisk is a robot asterisk.”

o CleverNAD - O

(6:459:17 PM) Human: a "

{6:45:30 PM) Human: what is your favorte name
{6:49:36 PM) Robot: Sofea.

{6:45:42 PM) Human: what is your name
(6:45:43 PM) Robot: Shaun. What is your name?
{6:45:48 PM) Human: my name is human
{6:49:53 PM) Robat: Can you tell me vour name?
(6:493:55 PM) Try Again. Speak Cleary.

{6:50:02 PM) Human: as human

{6:50:05 PM) Robot: Are vou a robat ?

{6:50:11 PM} Human: know | am not are you a robot
{6:50:13 PM) Robat: | am not a robot.

{6:50:20 PM) Human: argue that

{6:50:21 PM) Robat: | am a human. Mat a robat.

Clear
Conversation

Figure 13: Push-to-Talk on CleverNAO Software
This minor issue, however, is overshadowed by the failure of Microsoft’s Speech
Recognition Engine. As shown in the excerpt of a conversation below, the speech-to-text largely
fails from the beginning. The first input was a spoken sentence, “Hello.” This was translated to
“How old.” From here, repeated attempts are made to speak ‘Hello’ and have it recognized
properly. The following inputs by ‘Human’ can be understood when analyzing it semantically.
However, some are very off. Consider this input: “aunt you said your name was for an.” The actual

spoken sentence was, “But you said your name was Frank.” It would seem as if the speech recognition is

28

finding difficulty in recognizing the beginnings and ends of a sentence most especially. Either way, this

failure can be attributed to the CleverNAO system, yet only to the Speech Recognition module. In order

to rectify this particular failure, either further development is needed to implement Microsoft’s Speech

Recognition or a new speech recognition library is needed altogether.

(6:47:03 PM) Human: How old

(6:47:09 PM) Robot: Whaaat?

(6:47:15 PM) Human: I mean hello

(6:47:18 PM) Robot: Hello.

(6:47:22 PM) Human: owl or you

(6:47:23 PM) Robot: Me.

(6:47:31 PM) Human: how are you

(6:47:38 PM) Robot: Good.

(6:47:44 PM) Human: what is your name

(6:47:45 PM) Robot: I already told you, it's Frank.
(6:47:49 PM) Human: low frank

(6:47:52 PM) Robot: Low one.

(6:48:02 PM) Human: what do you believe an
(6:48:05 PM) Robot: My name is Cleverbot.
(6:48:13 PM) Human: aunt you said your name was for an
(6:48:13 PM) Robot: My name is Andi.

(6:48:23 PM) Human: Alemany names do you have

(6:48:24 PM) Robot: I have many names, but most people call me Adam.

(6:48:34 PM) Human: is your favorite name

(6:48:35 PM) Robot: My favorite movie is Indiana Jones.
(6:48:42 PM) Human: is your favorite name

(6:48:44 PM) Robot: My favorite food is pizza too.
(6:48:51 PM) Human: OPS is your favorite name
(6:48:57 PM) Robot: Oh ok!

(6:49:05 PM) Human: is your favorite and

(6:49:06 PM) Robot: No, my favorite animal is rabbit.
(6:49:11 PM) Human: what is your favorites name
(6:49:12 PM) Robot: Favorite what?

(6:49:17 PM) Human: a

(6:49:30 PM) Human: what is your favorite name
(6:49:36 PM) Robot: Sofea.

(6:49:42 PM) Human: what is your name

(6:49:43 PM) Robot: Shaun. What is your name?
(6:49:48 PM) Human: my name is human

(6:49:53 PM) Robot: Can you tell me your name?
(6:49:59 PM) Try Again. Speak Clearly.

(6:50:02 PM) Human: as human

(6:50:05 PM) Robot: Are you a robot?

(6:50:11 PM) Human: know I am not are you a robot

29

(6:50:13 PM) Robot: I am not a robot.

(6:50:20 PM) Human: argue that

(6:50:21 PM) Robot: I am a human. Not a robot.
(6:50:37 PM) Human: don't believe you

(6:50:39 PM) Robot: Are you a computer?

(6:51:56 PM) Human: know I am not are you a computer
(6:51:59 PM) Robot: I compute certain things.

30

